
Guide to Selecting the Most Suitable Technique

Selecting a technique requires consideration of a variety of important criteria, such as: detection limits, analytical working range, and elements of interest. The tables below provide detection limit ranges for ICP-OES and ICP-MS for various elements. If detection limit ranges are not provided for an element, analysis may not be feasible by the specified technique.

hydrogen 1	Elements Measureable by ICP-OES										1±liu-1 2						
H 1907°		Detection Limit Ranges											He				
Inthium 3 Li	Be	< 0.1 ppb (μg/L) 0.1 - 1 ppb (μg/L) 0.1 - 1 ppb (μg/L) 1						Ó	fluctine 9 F	10 Ne							
sodium 11 Na 22,990	**sgnesium 12 Mg 24,305	1 - 10 ppb (μg/L) Al Si P S							chlorine 17 CI 35.453	18 Ar							
potassium 19 K 39,098	Ca 49,078	Scandium 21 SC 41,956	.ilarium 22 Ti 4/26/	vanad iim 23 V 50,942	Cr 51.996	Manganese 25 Mn 54,938	Fe 55.845	27 Co	nickel 28 Ni 55.693	Cu 63,546	Zn	931 m 31 Ga	gernsation 32 Ge	AS	Se 78.96	Br 79,464	493-1201 36 Kr 83.798
85.468	strontium 38 Sr 87.62	yttrium 39 Y 88,956	zirconium 40 Zr	n obium 41 Nb 92,906	Mo 95,96	TC	Ru 101,07	rhefun 45 Rh 10291	Pd 105.42	47 Ag 107,57	48 Cd	indium 49 In	50 Sn	antimony 51 Sb 121.76	Te	126.90	Xenen 54 Xe 131.29
55 C S	56 Ba		hafniu n 72 Hf	73 Ta	74 W	Re	05 05	Iridium 77 Ir 19222	Pt	90ld 79 Au	Hg	the lium 81 TI 26438	Pb	Bi	Po	astat ne 85 At	12 fen 86 Rn
Fanctum 87 Fr [128]	Ra		utherfordium 104 Rf [241]	dutnium 105 Db [xx]	scaborgium 106 Sg	Eahrium 107 Bh	hassium 108 HS	mdineikim 109 Mt [208]	da moladilor 110 Ds [271]	Rg							
			lantham.m 57	red.m 58 Ce	prazeodytvium 59 Pr	neodymium 60 Nd	eremeth'urs 61 Pm	Sm	europhim 63 Eu	gadelinium 64 Gd	tereium 65 Tb	dysprodum 66 Dy	halmium 67 Ho	edito 68 Er	thulum 69	ysterbium 70 Yb	kteriim 71 Lu
			136.91 Activities 89	140.12 therium 90	140 91 91 Pa	14774 Urani Im 92	1145' 549tun'ur 93 Np	Pu Pu	151.96 Americal Im 95 Am	197,25 cu-lum 96 Cm	seet seration 97 Bk	162.50 californium 98 Cf	164.93 elected im 99	167.26 femilion 100 Fm	168.93 mencelessum 101 Md	1/5/05 sahe lum 102 NO	103 Lr

